

Welcome to TidyPy’s documentation!

Contents:

	TidyPy
	Overview

	Features

	Usage

	Docker

	Configuration

	Ignoring Issues

	Included Tools

	Included Reporters

	Included Integrations

	Extending TidyPy

	FAQs

	Contributing

	License

	API Reference

	TidyPy Change Log
	0.21.1 (2021-09-14)

	0.21.0 (2021-08-28)

	0.20.0 (2021-03-19)

	0.19.0 (2021-01-16)

	0.18.0 (2020-11-27)

	0.17.0 (2020-10-10)

	0.16.0 (2020-09-12)

	0.15.0 (2020-07-12)

	0.14.0 (2020-05-12)

	0.13.0 (2020-04-10)

	0.12.0 (2020-01-05)

	0.11.0 (2019-09-29)

	0.10.1 (2019-06-02)

	0.10.0 (2019-05-18)

	0.9.0 (2019-03-16)

	0.8.0 (2019-01-30)

	0.7.0 (2018-10-24)

	0.6.0 (2018-09-30)

	0.5.0 (2018-05-05)

	0.4.0 (2017-12-02)

	0.3.0 (2017-11-18)

	0.2.0 (2017-11-04)

	0.1.0 (2017-10-15)

	MIT License

Indices and tables

	Index

	Search Page

TidyPy

[image: _images/tidypy.svg]
 [https://pypi.org/project/tidypy][image: _images/tidypy1.svg]
 [https://pypi.org/project/tidypy][image: _images/c43eb11b0edaf0e6b5eb0a37ebc086a533fca360.svg]
 [https://tidypy.readthedocs.io][image: _images/badge.svg]
 [https://github.com/jayclassless/tidypy/actions][image: _images/badge1.svg]
 [https://hub.docker.com/r/tidypy/tidypy]
Contents

	TidyPy

	Overview

	Features

	Usage

	Docker

	Configuration

	Ignoring Issues

	Included Tools

	Included Reporters

	Included Integrations

	Extending TidyPy

	FAQs

	Contributing

	License

Overview

TidyPy is a tool that encapsulates a number of other static analysis tools and
makes it easy to configure, execute, and review their results.

Features

	It’s a consolidated tool for performing static analysis on an entire Python
project – not just your *.py source files. In addition to executing a
number of different tools on your code, it can also check your YAML, JSON,
PO, POT, and RST files.

	Rather than putting yet another specialized configuration file in your
project, TidyPy uses the pyproject.toml file defined by PEP 518 [https://www.python.org/dev/peps/pep-0518/]. All
options for all the tools TidyPy uses are declared in one place, rather than
requiring that you configure each tool in a different way.

	Honors the pseudo-standard # noqa comment in your Python source to easily
ignore issues reported by any tool.

	Includes a number of integrations so you can use it with your favorite
toolchain.

	Includes a variety of reporters that allow you to view or use the results
of TidyPy’s analysis in whatever way works best for you.

	Provides a simple API for you to implement your own tool or reporter and
include it in the analysis of your project.

	Supports both Python 2 and 3, as well as PyPy. Even runs on Windows.

Usage

When TidyPy is installed (pip install tidypy), the tidypy command
should become available in your environment:

$ tidypy --help
Usage: tidypy [OPTIONS] COMMAND [ARGS]...

 A tool that executes several static analysis tools upon a Python project
 and aggregates the results.

Options:
 --version Show the version and exit.
 --help Show this message and exit.

Commands:
 check Executes the tools upon the project files.
 default-config Outputs a default configuration that can be used to
 bootstrap your own configuration file.
 extensions Outputs a listing of all available TidyPy extensions.
 install-vcs Installs TidyPy as a pre-commit hook into the specified
 VCS.
 list-codes Outputs a listing of all known issue codes that tools
 may report.
 purge-config-cache Deletes the cache of configurations retrieved from
 outside the primary configuration.
 remove-vcs Removes the TidyPy pre-commit hook from the specified
 VCS.

To have TidyPy analyze your project, use the check subcommand:

$ tidypy check --help
Usage: tidypy check [OPTIONS] [PATH]

 Executes the tools upon the project files.

 Accepts one argument, which is the path to the base of the Python project.
 If not specified, defaults to the current working directory.

Options:
 -x, --exclude REGEX Specifies a regular expression matched
 against paths that you want to exclude from
 the examination. Can be specified multiple
 times. Overrides the expressions specified
 in the configuration file.
 -t, --tool [bandit|dlint|eradicate|jsonlint|manifest|mccabe|polint|pycodestyle|pydiatra|pydocstyle|pyflakes|pylint|pyroma|rstlint|secrets|vulture|yamllint]
 Specifies the name of a tool to use during
 the examination. Can be specified multiple
 times. Overrides the configuration file.
 -r, --report [console,csv,custom,json,null,pycodestyle,pylint,pylint-parseable,toml,yaml][:filename]
 Specifies the name of a report to execute
 after the examination. Can specify an
 optional output file name using the form -r
 report:filename. If filename is unset, the
 report will be written on stdout. Can be
 specified multiple times. Overrides the
 configuration file.
 -c, --config FILENAME Specifies the path to the TidyPy
 configuration file to use instead of the
 configuration found in the project's
 pyproject.toml.
 --workers NUM_WORKERS The number of workers to use to concurrently
 execute the tools. Overrides the
 configuration file.
 --disable-merge Disable the merging of issues from various
 tools when TidyPy considers them equivalent.
 Overrides the configuration file.
 --disable-progress Disable the display of the progress bar.
 --disable-noqa Disable the ability to ignore issues using
 the "# noqa" comment in Python files.
 --disable-config-cache Disable the use of the cache when retrieving
 configurations referenced by the "extends"
 option.
 --help Show this message and exit.

If you need to generate a skeleton configuration file with the default options,
use the default-config subcommand:

$ tidypy default-config --help
Usage: tidypy default-config [OPTIONS]

 Outputs a default configuration that can be used to bootstrap your own
 configuration file.

Options:
 --pyproject Output the config so that it can be used in a pyproject.toml
 file.
 --help Show this message and exit.

If you’d like to see a list of the possible issue codes that could be returned,
use the list-codes subcommand:

$ tidypy list-codes --help
Usage: tidypy list-codes [OPTIONS]

 Outputs a listing of all known issue codes that tools may report.

Options:
 -t, --tool [bandit|dlint|eradicate|jsonlint|manifest|mccabe|polint|pycodestyle|pydiatra|pydocstyle|pyflakes|pylint|pyroma|rstlint|secrets|vulture|yamllint]
 Specifies the name of a tool whose codes
 should be output. If not specified, defaults
 to all tools.
 -f, --format [toml|json|yaml|csv]
 Specifies the format in which the tools
 should be output. If not specified, defaults
 to TOML.
 --help Show this message and exit.

If you want to install or remove TidyPy as a pre-commit hook in your project’s
VCS, use the install-vcs/remove-vcs subcommands:

$ tidypy install-vcs --help
Usage: tidypy install-vcs [OPTIONS] VCS [PATH]

 Installs TidyPy as a pre-commit hook into the specified VCS.

 Accepts two arguments:

 VCS: The version control system to install the hook into. Choose from:
 git, hg

 PATH: The path to the base of the repository to install the hook into.
 If not specified, defaults to the current working directory.

Options:
 --strict Whether or not the hook should prevent the commit if TidyPy finds
 issues.
 --help Show this message and exit.

$ tidypy remove-vcs --help
Usage: tidypy remove-vcs [OPTIONS] VCS [PATH]

 Removes the TidyPy pre-commit hook from the specified VCS.

 Accepts two arguments:

 VCS: The version control system to remove the hook from. Choose from:
 git, hg

 PATH: The path to the base of the repository to remove the hook from. If
 not specified, defaults to the current working directory.

Options:
 --help Show this message and exit.

If you’d like to enable bash completion for TidyPy, run the following in your
shell (or put it in your bash startup scripts):

$ eval "$(_TIDYPY_COMPLETE=source tidypy)"

Docker

If you don’t want to install TidyPy locally on your system or in your
virtualenv, you can use the published Docker [https://hub.docker.com/r/tidypy/tidypy] image:

$ docker run --rm --tty --volume=`pwd`:/project tidypy/tidypy

The command above will run tidypy check on the contents of the current
directory. If you want to run it on a different directory, then change the
`pwd` to whatever path you need (the goal being to mount your project
directory to the container’s /project volume).

Running TidyPy in this manner has a few limitiations, mostly around the fact
that since TidyPy is running in its own, isolated Python environment, tools
like pylint won’t be able to introspect the packages your project installed
locally, so it may report false positives around “import-error”,
“no-name-in-module”, “no-member”, etc.

If you want to run a command other than check, just pass that along when
you invoke docker:

$ docker run --rm --tty --volume=`pwd`:/project tidypy/tidypy tidypy list-codes

Configuration

TODO

Ignoring Issues

In addition to ignoring entire files, tools, or specific issue types from tools
via your configuration file, you can also use comments in your Python source
files to ignore issues on specific lines. Some tools have their own built-in
support and notation for doing this:

	pylint will respect [https://pylint.readthedocs.io/en/latest/faq.html#message-control] comments that look like: # pylint

	bandit will respect [https://github.com/openstack/bandit#exclusions]
comments that look like: # nosec

	pycodestyle will respect [http://pycodestyle.pycqa.org/en/latest/intro.html#error-codes] comments that look like: # noqa

	pydocstyle will also respect [http://www.pydocstyle.org/en/2.1.1/usage.html#in-file-configuration] comments that look like: # noqa

	detect-secrets will respect [https://github.com/Yelp/detect-secrets#inline-whitelisting] comments that look like: # pragma: whitelist
secret

TidyPy goes beyond these tool-specific flags to implement # noqa on a
global scale for Python source files. It will ignore issues for lines that have
the # noqa comment, regardless of what tools raise the issues. If you only
want to ignore a particular type of issue on a line, you can use syntax like
the following:

noqa: CODE1,CODE2

Or, if a particular code is used in multiple tools, you can specify the exact
tool in the comment:

noqa: pycodestyle:CODE1,pylint:CODE2

Or, if you want to ignore any issue a specific tool raises on a line, you can
specify the tool:

noqa: @pycodestyle,@pylint

You can, of course, mix and match all three notations in a single comment if
you need to:

noqa: CODE1,pylint:CODE2,@pycodestyle

You can disable TidyPy’s NOQA behavior by specifying the --disable-noqa
option on the command line, or by setting the noqa option to false in
your configuration file. A caveat, though: currently pycodestyle and pydocstyle
do not respect this option and will always honor any # noqa comments they
find.

Included Tools

Out of the box, TidyPy includes support for a number of tools:

	pylint

	Pylint [https://github.com/PyCQA/pylint] is a Python source code analyzer which looks for programming
errors, helps enforcing a coding standard and sniffs for some code smells.

	pycodestyle

	pycodestyle [https://github.com/PyCQA/pycodestyle] is a tool to check your Python code against some of the
style conventions in PEP 8 [https://www.python.org/dev/peps/pep-0008/].

	pydocstyle

	pydocstyle [https://github.com/PyCQA/pydocstyle] is a static analysis tool for checking compliance with Python
docstring conventions (e.g., PEP 257 [https://www.python.org/dev/peps/pep-0257/]).

	pyroma

	Pyroma [https://github.com/regebro/pyroma] tests your project’s packaging friendliness.

	vulture

	Vulture [https://github.com/jendrikseipp/vulture] finds unused code in Python programs.

	bandit

	Bandit [https://wiki.openstack.org/wiki/Security/Projects/Bandit] is a security linter for Python source code.

	eradicate

	Eradicate [https://github.com/myint/eradicate] finds commented-out code in Python files.

	pyflakes

	Pyflakes [https://github.com/PyCQA/pyflakes] is a simple program which checks Python source files for
errors.

	mccabe

	Ned Batchelder’s script to check the McCabe [https://github.com/pycqa/mccabe] cyclomatic complexity of
Python code.

	jsonlint

	A part of the demjson [https://github.com/dmeranda/demjson] package, this tool validates your JSON documents
for strict conformance to the JSON specification, and to detect potential
data portability issues.

	yamllint

	The yamllint [https://github.com/adrienverge/yamllint] tool, as its name implies, is a linter for YAML files.

	rstlint

	The restructuredtext-lint [https://github.com/twolfson/restructuredtext-lint] tool, as its name implies, is a linter for
reStructuredText files.

	polint

	A part of the dennis [https://github.com/willkg/dennis] package, this tool lints PO and POT files for
problems.

	manifest

	Uses the check-manifest [https://github.com/mgedmin/check-manifest] script to detect discrepancies or problems with
your project’s MANIFEST.in file.

	pydiatra

	pydiatra [https://github.com/jwilk/pydiatra] is yet another static checker for Python code.

	secrets

	The detect-secrets [https://github.com/Yelp/detect-secrets] tool attempts to find secrets (keys, passwords, etc)
within a code base.

	dlint

	Dlint [https://github.com/duo-labs/dlint] is a tool for encouraging best coding practices and helping ensure
we’re writing secure Python code.

Included Reporters

TidyPy includes a number of different methods to present and/or export the
results of the analysis of a project. Out of the box, it provides the
following:

	console

	The default reporter. Prints a colored report to the console that groups
issues by the file they were found in.

	pylint

	Prints a report to the console that is in the same format as Pylint [https://github.com/PyCQA/pylint]’s
default output.

	pylint-parseable

	Prints a report to the console that is in roughly the same format as
Pylint [https://github.com/PyCQA/pylint]’s “parseable” output.

	pycodestyle

	Prints a report to the console that is in the same format as
pycodestyle [https://github.com/PyCQA/pycodestyle]’s default output.

	json

	Generates a JSON-serialized object that contains the results of the
analysis.

	yaml

	Generates a YAML-serialized object that contains the results of the
analysis.

	toml

	Generates a TOML-serialized object that contains the results of the
analysis.

	csv

	Generates a set of CSV records that contains the results of the analysis.

	custom

	Prints ouput to the console that is in the format defined by a template
string specified in the project configuration. The template string is
expected to be one allowed by the str.format() [https://docs.python.org/3/library/stdtypes.html#str.format] Python method. It will
receive the following arguments: filename, line, character,
tool, code, message.

Included Integrations

TidyPy includes a handful of plugins/integrations that hook it into other
tools.

	pytest

	TidyPy can be run during execution of your pytest [https://docs.pytest.org] test suite. To enable
it, you need to specify --tidypy on the command line when you run
pytest, or include it as part of the addopts property in your pytest
config.

	nose

	TidyPy can be run during execution of your nose [https://nose.readthedocs.io] test suite. To enable
it, you can either specify --with-tidypy on the command line when you
run nose, or set the with-tidypy property to 1 in your
setup.cfg.

	pbbt

	TidyPy can be included in your PBBT [https://bitbucket.org/prometheus/pbbt] scripts using the tidypy test.
To enable it, you can either specify --extend=tidypy.plugin.pbbt on the
command line when you run PBBT, or set the extend property in your
setup.cfg or pbbt.yaml to tidypy.plugin.pbbt.

Extending TidyPy

A simple interface exists for extending TidyPy to include more and different
tools and reporters. To add a tool, create a class that extends tidypy.Tool [https://tidypy.readthedocs.io/en/stable/api.html#tidypy.Tool],
and in your setup.py, declare an entry_point for tidypy.tools that
points to your class:

entry_points={
 'tidypy.tools': [
 'mycooltool = path.to.model:MyCoolToolClassName',
],
}

To add a reporter, the process is nearly identical, except that you extend
tidypy.Report [https://tidypy.readthedocs.io/en/stable/api.html#tidypy.Report] and declare an entry_point for tidypy.reports.

FAQs

	Aren’t there already tools like this?

	Yup. There’s prospector [https://github.com/landscapeio/prospector], pylama [https://github.com/klen/pylama], flake8 [https://gitlab.com/pycqa/flake8], and ciocheck [https://github.com/ContinuumIO/ciocheck] just to
name a few. But, as is customary in the world of software development, if
the wheel isn’t as round as you’d like it to be, you must spend countless
hours to reinvent it. I’ve tried a number of these tools (and even
contributed to some), but in the end, I always found something lacking or
annoying. Thus, TidyPy was born.

	How do I run TidyPy on a single file?

	The short answer is, you don’t (at the moment, anyway). It wasn’t designed
with that use case in mind. TidyPy was built to analyze a whole project,
and show you everything.

	I tried TidyPy out on my project and it reported hundreds/thousands of issues. My ego is now bruised.

	Yea, that happens. The philosophy I chose to follow with this tool is that
I didn’t want it to hide anything from me. I wanted its default behavior to
execute every tool in its suite using their most obnoxious setting. Then,
when I can see the full scope of damage, I can then decide to disable
specific tools or issues via a project-level configuration. I figured if
someone took the time to implement a check for a particular issue, they
must think it has some value. If my tooling hides that from me by default,
then I won’t be able to gain any benefits from it.

In general, I don’t recommend starting to use linters or other sorts of
static analyzers when you think you’re “done”. You should incorporate them
into your workflow right at the beginning of a project – just as you would
(or should) your unit tests. That way you find things early and learn from
them (or disable them). It’s much less daunting a task to deal with when
you address them incrementally.

Contributing

Contributions are most welcome. Particularly if they’re bug fixes! To hack on
this code, simply clone it, and then run make setup. This will create a
virtualenv with all the tools you’ll need. The Makefile also has a test
target for running the pytest suite, and a lint target for running TidyPy
on itself.

License

TidyPy is released under the terms of the MIT License [https://opensource.org/licenses/MIT].

API Reference

	
tidypy.execute_tools(config, path, progress=None)

	Executes the suite of TidyPy tools upon the project and returns the
issues that are found.

	Parameters

	
	config (dict) – the TidyPy configuration to use

	path (str) – that path to the project to analyze

	progress (tidypy.Progress) – the progress reporter object that will receive callbacks during the
execution of the tool suite. If not specified, not progress
notifications will occur.

	Return type

	tidypy.Collector

	
tidypy.execute_reports(config, path, collector, on_report_finish=None, output_file=None)

	Executes the configured suite of issue reports.

	Parameters

	
	config (dict) – the TidyPy configuration to use

	path (str) – that path to the project that was analyzed

	collector (tidypy.Collector) – the issues to report

	
tidypy.get_tools()

	Retrieves the TidyPy tools that are available in the current Python
environment.

The returned dictionary has keys that are the tool names and values are the
tool classes.

	Return type

	dict

	
tidypy.get_reports()

	Retrieves the TidyPy issue reports that are available in the current Python
environment.

The returned dictionary has keys are the report names and values are the
report classes.

	Return type

	dict

	
tidypy.get_extenders()

	Retrieves the TidyPy configuration extenders that are available in the
current Python environment.

The returned dictionary has keys are the extender names and values are the
extender classes.

	Return type

	dict

	
tidypy.get_default_config()

	Produces a stock/out-of-the-box TidyPy configuration.

	Return type

	dict

	
tidypy.get_user_config(project_path, use_cache=True)

	Produces a TidyPy configuration that incorporates the configuration files
stored in the current user’s home directory.

	Parameters

	
	project_path (str) – the path to the project that is going to be analyzed

	use_cache (bool) – whether or not to use cached versions of any remote/referenced TidyPy
configurations. If not specified, defaults to True.

	Return type

	dict

	
tidypy.get_local_config(project_path, use_cache=True)

	Produces a TidyPy configuration using the pyproject.toml in the
project’s directory.

	Parameters

	
	project_path (str) – the path to the project that is going to be analyzed

	use_cache (bool) – whether or not to use cached versions of any remote/referenced TidyPy
configurations. If not specified, defaults to True.

	Return type

	dict

	
tidypy.get_project_config(project_path, use_cache=True)

	Produces the Tidypy configuration to use for the specified project.

If a pyproject.toml exists, the configuration will be based on that. If
not, the TidyPy configuration in the user’s home directory will be used. If
one does not exist, the default configuration will be used.

	Parameters

	
	project_path (str) – the path to the project that is going to be analyzed

	use_cache (bool) – whether or not to use cached versions of any remote/referenced TidyPy
configurations. If not specified, defaults to True.

	Return type

	dict

	
tidypy.purge_config_cache(location=None)

	Clears out the cache of TidyPy configurations that were retrieved from
outside the normal locations.

	
class tidypy.Tool(config)

	The base class for TidyPy tools.

	Parameters

	config (dict) – the tool configuration to use during execution

	
classmethod can_be_used()

	Indicates whether or not this tool can be executed now. Useful when you
need to check for certain environmental conditions (e.g., Python
version, dependency availability, etc).

Unless overridden, always returns True.

	Return type

	bool

	
config = None

	The tool’s configuration to use during its execution.

	
execute(finder)

	Analyzes the project and generates a list of issues found during that
analysis.

Must be implemented by concrete classes.

	Parameters

	finder (tidypy.Finder) – the Finder class that should be used to identify the files or
directories that the tool will analyze.

	Return type

	list(tidypy.Issue)

	
classmethod get_all_codes()

	Produces a sequence of all the issue codes this tool is capable of
generating. Elements in this sequence must all be 2-element tuples,
where the first element is the code, and the second is a textual
description of what the code means.

Must be implemented by concrete classes.

	Returns

	tuple of tuples containing two strings each

	
classmethod get_default_config()

	Produces a tool configuration stanza that acts as the base/default for
this tool.

rtype: dict

	
class tidypy.PythonTool(config)

	A convenience abstract class that automatically sets the filters in the
tool configuration to target Python source files.

	Parameters

	config (dict) – the tool configuration to use during execution

	
classmethod get_default_config()

	Produces a tool configuration stanza that acts as the base/default for
this tool.

rtype: dict

	
class tidypy.Issue(code=None, message=None, filename=None, line=None, character=None)

	A class that encapsulates an issue found during the analysis of a project.

	
character = None

	The character number within the line of the file where the issue was
found (if known). The first column in a line is notated as 1 (not zero).

	
code = None

	A string containing a code that identifies the type of issue found.

	
filename = None

	A string containing the full path to the file where the issue was found.

	
line = None

	The line number within the file where the issue was found (if known).
The first line in a file is notated as 1 (not zero).

	
message = None

	A string containing a description of the issue.

	
pylint_type = 'E'

	A character indicating the comparable pylint category this issue would
fall into: E=error, W=warning, R=refactor, C=convention

	
tool = None

	A string containing name of the tool that found the issue.

	
class tidypy.TidyPyIssue(code=None, message=None, filename=None, line=None, character=None)

	The base class for all TidyPy application issues that are produced.

	
class tidypy.UnknownIssue(exc, filename)

	A completely unanticipated exception/problem was encountered during the
execution of a tool.

	
class tidypy.AccessIssue(exc, filename)

	An issue indicating that a file/directory cannot be accessed (typically
due to permissions).

	
class tidypy.ParseIssue(exc, filename, line=None, character=None)

	An issue indicating that a file could not be parsed as expected (e.g., a
Python source file with invalid syntax).

	
class tidypy.ToolIssue(message, project_path, details=None, failure=False)

	An issue indicating that a tool completely crashed/failed during its
execution.

	
class tidypy.Finder(base_path, config)

	A class that encapsulates the logic of finding files in a project that will
be analyzed.

	Parameters

	
	base_path (str) – the path to the base of the project

	config (dict) – the configuration to use when searching the project

	
directories(filters=None, containing=None)

	A generator that produces a sequence of paths to directories in the
project that matches the specified filters.

	Parameters

	
	filters (list(str)) – the regular expressions to use when finding directories in the
project. If not specified, all directories are returned.

	containing (list(str)) – if a directory passes through the specified filters, it is checked
for the presence of a file that matches one of the regular
expressions in this parameter.

	
files(filters=None)

	A generator that produces a sequence of paths to files in the project
that matches the specified filters.

	Parameters

	filters (list(str)) – the regular expressions to use when finding files in the project.
If not specified, all files are returned.

	
is_excluded(path)

	Determines whether or not the specified file is excluded by the
project’s configuration.

	Parameters

	path (pathlib.Path) – the path to check

	Return type

	bool

	
is_excluded_dir(path)

	Determines whether or not the specified directory is excluded by the
project’s configuration.

	Parameters

	path (pathlib.Path) – the path to check

	Return type

	bool

	
modules(filters=None)

	A generator that produces a sequence of paths to files that look to be
Python modules (e.g., *.py).

	Parameters

	filters (list(str)) – the regular expressions to use when finding files in the project.
If not specified, all files are returned.

	
packages(filters=None)

	A generator that produces a sequence of paths to directories that look
to be Python packages (e.g., they contain an __init__.py).

	Parameters

	filters (list(str)) – the regular expressions to use when finding directories in the
project. If not specified, all directories are returned.

	
project_path

	The path to the project that this Finder is operating from.

	
read_file(filepath)

	Retrieves the contents of the specified file.

This function performs simple caching so that the same file isn’t read
more than once per process.

	Parameters

	filepath (str) – the file to read.

	Return type

	str

	
relative_to_project(filepath)

	Reformats a file path to be relative to this Finder’s project path.

	Parameters

	filepath (str or pathlib.Path) – the path to reformat

	Return type

	str

	
sys_paths(filters=None)

	Produces a list of paths that would be suitable to use in sys.path
in order to access the Python modules/packages found in this project.

	Parameters

	filters (list(str)) – the regular expressions to use when finding files in the project.
If not specified, all files are returned.

	
class tidypy.Collector(config)

	A class that contains all the issues found during an execution of the
TidyPy tool suite.

	Parameters

	config (dict) – the configuration used to during the analysis of the project

	
add_issues(issues)

	Adds an issue to the collection.

	Parameters

	issues (tidypy.Issue or list(tidypy.Issue)) – the issue(s) to add

	
get_grouped_issues(keyfunc=None, sortby=None)

	Retrieves the issues in the collection grouped into buckets according
to the key generated by the keyfunc.

	Parameters

	
	keyfunc (func) – a function that will be used to generate the key that identifies
the group that an issue will be assigned to. This function receives
a single tidypy.Issue argument and must return a string. If not
specified, the filename of the issue will be used.

	sortby (list(str)) – the properties to sort the issues by

	Return type

	OrderedDict

	
get_issues(sortby=None)

	Retrieves the issues in the collection.

	Parameters

	sortby (list(str)) – the properties to sort the issues by

	Return type

	list(tidypy.Issue)

	
issue_count(include_unclean=False)

	Returns the number of issues in the collection.

	Parameters

	include_unclean (bool) – whether or not to include issues that are being ignored due to
being a duplicate, excluded, etc.

	Return type

	int

	
class tidypy.Report(config, base_path, output_file=None)

	The base class for TidyPy issue reporters.

	Parameters

	
	config (dict) – the configuration used during the analysis of the project

	base_path (str) – the path to the project base directory

	
execute(collector)

	Produces the contents of the report.

Must be implemented by concrete classes.

	Parameters

	collector (tidypy.Collector) – the collection of issues to report on

	
output(msg, newline=True)

	Writes the specified string to the output target of the report.

	Parameters

	
	msg (str) – the message to output.

	newline (str) – whether or not to append a newline to the end of the message

	
relative_filename(filename)

	Generates a path for the specified filename that is relative to the
project path.

	Parameters

	filename (str) – the filename to generate the path for

	Return type

	str

	
class tidypy.Extender

	The base class for TidyPy configuration extenders.

	
classmethod can_handle(location)

	Indicates whether or not this Extender is capable of retrieving the
specified location.

	Parameters

	location (str) – a URI indicating where to retrieve the TidyPy configuration from

	Return type

	bool

	
classmethod parse(content, is_pyproject=False)

	A convenience method for parsing a TOML-serialized configuration.

	Parameters

	
	content (str) – a TOML string containing a TidyPy configuration

	is_pyproject (bool) – whether or not the content is (or resembles) a pyproject.toml
file, where the TidyPy configuration is located within a key named
tool.

	Return type

	dict

	
classmethod retrieve(location, project_path)

	Retrieves a TidyPy configuration from the specified location.

	Parameters

	
	location (str) – a URI indicating where to retrieve the TidyPy configuration from

	project_path (str) – the full path to the project’s base

	Return type

	dict

	
exception tidypy.ExtenderError

	The base class for all exceptions raised by an Extender during its
operation.

	
exception tidypy.DoesNotExistError

	An exception indicating that the specified Extender does not exist in the
current environment.

	
class tidypy.Progress

	An interface for receiving events that occur during the execution of the
TidyPy tool suite.

	
on_finish()

	Called after all tools in the suite have completed.

	
on_start()

	Called when the execution of the TidyPy tool suite begins.

	
on_tool_finish(tool)

	Called when an individual tool completes execution.

	Parameters

	tool (str) – the name of the tool that completed

	
on_tool_start(tool)

	Called when an individual tool begins execution.

	Parameters

	tool (str) – the name of the tool that is starting

	
class tidypy.QuietProgress

	An implementation of tidypy.Progress that produces no output.

	
class tidypy.ConsoleProgress(config)

	An implementation of tidypy.Progress that outputs a progress bar to the
console.

	
on_finish()

	Called after all tools in the suite have completed.

	
on_start()

	Called when the execution of the TidyPy tool suite begins.

	
on_tool_finish(tool)

	Called when an individual tool completes execution.

	Parameters

	tool (str) – the name of the tool that completed

	
on_tool_start(tool)

	Called when an individual tool begins execution.

	Parameters

	tool (str) – the name of the tool that is starting

TidyPy Change Log

Releases

	TidyPy Change Log

	0.21.1 (2021-09-14)

	0.21.0 (2021-08-28)

	0.20.0 (2021-03-19)

	0.19.0 (2021-01-16)

	0.18.0 (2020-11-27)

	0.17.0 (2020-10-10)

	0.16.0 (2020-09-12)

	0.15.0 (2020-07-12)

	0.14.0 (2020-05-12)

	0.13.0 (2020-04-10)

	0.12.0 (2020-01-05)

	0.11.0 (2019-09-29)

	0.10.1 (2019-06-02)

	0.10.0 (2019-05-18)

	0.9.0 (2019-03-16)

	0.8.0 (2019-01-30)

	0.7.0 (2018-10-24)

	0.6.0 (2018-09-30)

	0.5.0 (2018-05-05)

	0.4.0 (2017-12-02)

	0.3.0 (2017-11-18)

	0.2.0 (2017-11-04)

	0.1.0 (2017-10-15)

0.21.1 (2021-09-14)

Fixes

	Fixed an installation failure due to an old version of demjson not working
with setuptools>=58.

0.21.0 (2021-08-28)

Enhancements

	Upgraded the pylint tool.

	Upgraded the pep8-naming plugin of the pycodestyle tool.

0.20.0 (2021-03-19)

Enhancements

	Upgraded the pylint, secrets, pyroma, pydocstyle,
pycodestyle, and pyflakes tools.

0.19.0 (2021-01-16)

Enhancements

	Upgraded the manifest tool.

Fixes

	Fixed a crash due to the latest version of vulture.

0.18.0 (2020-11-27)

Enhancements

	Upgraded the manifest and dlint tools.

Fixes

	Fixed an issue that caused crashes when specifying additional options to the
yamllint tool.

0.17.0 (2020-10-10)

Enhancements

	Upgraded the manifest and eradicate tools.

0.16.0 (2020-09-12)

Enhancements

	Upgraded the pylint and vulture tools.

	Addd a --config option to the check command.

0.15.0 (2020-07-12)

Enhancements

	Upgraded the secrets and manifest tools.

	Upgraded the pep8-naming plugin of the pycodestyle tool.

Fixes

	Fixed an crash that occurred with v1.5 of vulture.

0.14.0 (2020-05-12)

Enhancements

	Upgraded the pycodestyle, pylint, and pyflakes tools.

0.13.0 (2020-04-10)

Enhancements

	Upgraded the dlint and manifest tools.

	Upgraded the pep8-naming plugin of the pycodestyle tool.

Fixes

	Fixed a dependency conflict with pyflakes.

0.12.0 (2020-01-05)

Enhancements

	Upgraded the manifest, secrets, pydocstyle, and dlint tools.

	Upgraded the pep8-naming plugin of the pycodestyle tool.

Changes

	Removed support for Python 2.

	Removed the setuptools plugin, as it was causing many problems, and was
little-used, anyway.

0.11.0 (2019-09-29)

Enhancements

	Added the dlint tool.

	Upgraded the pylint, pydocstyle, and manifest tools.

Fixes

	Fixed an issue with the most recent version of the vulture tool crashing.

0.10.1 (2019-06-02)

Fixes

	Fixed an issue listing the codes from the most recent version of the
pyroma tool.

0.10.0 (2019-05-18)

Enhancements

	Upgraded the manifest tool.

	Enabled the eradicate tool in PY3 environments.

0.9.0 (2019-03-16)

Enhancements

	Upgraded the pylint and secrets tools.

	Added a reporter named pylint-parseable that emulates pylint’s
“parseable” output format.

	Added a reporter named custom that allows you to specify the output
format of issues.

	Added support for the vulture options ignore-names,
ignore-decorators, and min-confidence (thanks acaprari [https://github.com/acaprari]).

0.8.0 (2019-01-30)

Enhancements

	Added ability to specify a filename for reports on the command line (thanks
douardda [https://github.com/douardda]).

	Upgraded the secrets, pylint, pycodestyle, and eradicate
tools.

	Upgraded the pep8-naming plugin of the pycodestyle tool.

0.7.0 (2018-10-24)

Enhancements

	Upgraded the pycodestyle, pydocstyle, vulture, and pyflakes
tools.

	Added ability to distinguish and disable specific codes from the secrets
tool.

0.6.0 (2018-09-30)

Enhancements

	Added the secrets tool.

	Enabled the pydiatra tool on windows (thanks jwilk [https://github.com/jwilk]).

	Upgraded the pylint and vulture tools.

	Upgraded the pep8-naming plugin of the pycodestyle tool.

Fixes

	Fixed an issue with rstlint crashing due to recent updates to Sphinx.

0.5.0 (2018-05-05)

Enhancements

	Added manifest and pydiatra tools.

	Upgraded the pylint tool.

	Upgraded the pep8-naming plugin of the pycodestyle tool.

	Added some convenience handling of the License vs Licence and
LicenceClassifier vs LicenseClassifier codes reported by pyroma.

	Added the first draft of the project documentation.

	Added an extensions command that will output a listing of all the
available tools, reports, and extenders that are available.

Fixes

	Fixed the character location reported in pylint issues being off-by-one.

	Fixed various issues with the pyroma tool leaking problems to stderr.

0.4.0 (2017-12-02)

Enhancements

	Added a sphinx-extensions option to the rstlint tool to enable the
automatic recognition of Sphinx-specific extensions to ReST (Sphinx must be
installed in the same environment as TidyPy for it to work).

	Added a ignore-roles option to the rstlint tool to help deal with
non-standard ReST text roles.

	Changed tool execution from a multithreaded model to multiprocess. Larger
projects should see an improvement in execution speed.

Changes

	The --threads option to the check command has been changed to
--workers.

Fixes

	Fixed an issue that caused the pylint tool to crash when it encountered
duplicate-code issues on files that are being excluded from analysis.

0.3.0 (2017-11-18)

Enhancements

	Added ignore-directives and load-directives options to the
rstlint tool to help deal with non-standard ReST directives.

	Added support for the extension-pkg-whitelist option to the pylint
tool.

	Added install-vcs and remove-vcs commands to install/remove
pre-commit hooks into the VCS of a project that will execute TidyPy.
Currently supports both Git and Mercurial.

Changes

	Changed the merge_issues and ignore_missing_extends options to
merge-issues and ignore-missing-extends for naming consistency.

	Replaced the radon tool with the traditional mccabe tool.

Fixes

	Fixed issue that caused TidyPy to spin out of control if you used CTRL-C to
kill it while it was executing tools.

	Fixed issue where pylint’s duplicate-code issue was reported only
against one file, and it was usually the wrong file. TidyPy will now report
an issue against each file identified with the duplicate code.

	Numerous fixes to support running TidyPy on Windows.

0.2.0 (2017-11-04)

Enhancements

	Added a 2to3 tool.

	All tools that report issues against Python source files can now use the
noqa comment to ignore issues for that specific line.

	Added support for the ignore-nosec option in the bandit tool.

	Added the ability for TidyPy configurations to extend from other
configuration files via the extends property.

	Upgraded the vulture tool.

	Upgraded the pyflakes tool.

Changes

	Changed the --no-merge and --no-progress options to the check
command to --disable-merge and --disable-progress.

	The check command will now return 1 to the shell if TidyPy finds
issues.

	No longer overriding pycodestyle’s default max-line-length.

Fixes

	If any tools output directly to stdout or stderr, TidyPy will now capture it
and report it as a tidypy:tool issue.

	Fixed crash/hang that occurred when using --disable-progress.

0.1.0 (2017-10-15)

	Initial public release.

MIT License

Copyright (c) 2017, Jason Simeone

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Python Module Index

 t

 		 	

 		
 t	

 	
 	
 tidypy	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | U

A

 	
 	AccessIssue (class in tidypy)

 	
 	add_issues() (tidypy.Collector method)

C

 	
 	can_be_used() (tidypy.Tool class method)

 	can_handle() (tidypy.Extender class method)

 	character (tidypy.Issue attribute)

 	
 	code (tidypy.Issue attribute)

 	Collector (class in tidypy)

 	config (tidypy.Tool attribute)

 	ConsoleProgress (class in tidypy)

D

 	
 	directories() (tidypy.Finder method)

 	
 	DoesNotExistError

E

 	
 	execute() (tidypy.Report method)

 	(tidypy.Tool method)

 	execute_reports() (in module tidypy)

 	
 	execute_tools() (in module tidypy)

 	Extender (class in tidypy)

 	ExtenderError

F

 	
 	filename (tidypy.Issue attribute)

 	
 	files() (tidypy.Finder method)

 	Finder (class in tidypy)

G

 	
 	get_all_codes() (tidypy.Tool class method)

 	get_default_config() (in module tidypy)

 	(tidypy.PythonTool class method)

 	(tidypy.Tool class method)

 	get_extenders() (in module tidypy)

 	get_grouped_issues() (tidypy.Collector method)

 	
 	get_issues() (tidypy.Collector method)

 	get_local_config() (in module tidypy)

 	get_project_config() (in module tidypy)

 	get_reports() (in module tidypy)

 	get_tools() (in module tidypy)

 	get_user_config() (in module tidypy)

I

 	
 	is_excluded() (tidypy.Finder method)

 	is_excluded_dir() (tidypy.Finder method)

 	
 	Issue (class in tidypy)

 	issue_count() (tidypy.Collector method)

L

 	
 	line (tidypy.Issue attribute)

M

 	
 	message (tidypy.Issue attribute)

 	
 	modules() (tidypy.Finder method)

O

 	
 	on_finish() (tidypy.ConsoleProgress method)

 	(tidypy.Progress method)

 	on_start() (tidypy.ConsoleProgress method)

 	(tidypy.Progress method)

 	
 	on_tool_finish() (tidypy.ConsoleProgress method)

 	(tidypy.Progress method)

 	on_tool_start() (tidypy.ConsoleProgress method)

 	(tidypy.Progress method)

 	output() (tidypy.Report method)

P

 	
 	packages() (tidypy.Finder method)

 	parse() (tidypy.Extender class method)

 	ParseIssue (class in tidypy)

 	Progress (class in tidypy)

 	
 	project_path (tidypy.Finder attribute)

 	purge_config_cache() (in module tidypy)

 	pylint_type (tidypy.Issue attribute)

 	PythonTool (class in tidypy)

Q

 	
 	QuietProgress (class in tidypy)

R

 	
 	read_file() (tidypy.Finder method)

 	relative_filename() (tidypy.Report method)

 	
 	relative_to_project() (tidypy.Finder method)

 	Report (class in tidypy)

 	retrieve() (tidypy.Extender class method)

S

 	
 	sys_paths() (tidypy.Finder method)

T

 	
 	tidypy (module)

 	TidyPyIssue (class in tidypy)

 	
 	Tool (class in tidypy)

 	tool (tidypy.Issue attribute)

 	ToolIssue (class in tidypy)

U

 	
 	UnknownIssue (class in tidypy)

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to TidyPy’s documentation!

 		
 TidyPy

 		
 Overview

 		
 Features

 		
 Usage

 		
 Docker

 		
 Configuration

 		
 Ignoring Issues

 		
 Included Tools

 		
 Included Reporters

 		
 Included Integrations

 		
 Extending TidyPy

 		
 FAQs

 		
 Contributing

 		
 License

 		
 API Reference

 		
 TidyPy Change Log

 		
 0.21.1 (2021-09-14)

 		
 0.21.0 (2021-08-28)

 		
 0.20.0 (2021-03-19)

 		
 0.19.0 (2021-01-16)

 		
 0.18.0 (2020-11-27)

 		
 0.17.0 (2020-10-10)

 		
 0.16.0 (2020-09-12)

 		
 0.15.0 (2020-07-12)

 		
 0.14.0 (2020-05-12)

 		
 0.13.0 (2020-04-10)

 		
 0.12.0 (2020-01-05)

 		
 0.11.0 (2019-09-29)

 		
 0.10.1 (2019-06-02)

 		
 0.10.0 (2019-05-18)

 		
 0.9.0 (2019-03-16)

 		
 0.8.0 (2019-01-30)

 		
 0.7.0 (2018-10-24)

 		
 0.6.0 (2018-09-30)

 		
 0.5.0 (2018-05-05)

 		
 0.4.0 (2017-12-02)

 		
 0.3.0 (2017-11-18)

 		
 0.2.0 (2017-11-04)

 		
 0.1.0 (2017-10-15)

 		
 MIT License

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

